منابع مشابه
Tailoring protein nanomechanics with chemical reactivity
The nanomechanical properties of elastomeric proteins determine the elasticity of a variety of tissues. A widespread natural tactic to regulate protein extensibility lies in the presence of covalent disulfide bonds, which significantly enhance protein stiffness. The prevalent in vivo strategy to form disulfide bonds requires the presence of dedicated enzymes. Here we propose an alternative chem...
متن کاملClathrin-protein interactions.
There is a complex network of protein-protein and protein-lipid interactions that underlie clathrin-mediated vesicular traffic in all compartmentalized cells from yeast to man. Major progress has been made in the determination of the three-dimensional structures of many of the components. Recently, there has been an explosion in the identification and characterization of clathrin binding partne...
متن کاملComparative analysis of nanomechanics of protein filaments under lateral loading.
Using a combination of explicit solvent atomistic simulation and continuum theory, here we study the lateral deformation mechanics of three distinct protein structures: an amyloid fibril, a beta helix, and an alpha helix. We find that the two β-sheet rich structures - amyloid fibril and beta helix, with persistence lengths on the order of μm - are well described by continuum mechanical theory, ...
متن کاملClathrin-associated adaptor protein complexes.
Membrane traffic among organelles of the secretory and endocytic pathways is mediated by small, transport vesicles that are classified according to the protein coat used in their formation and the cargo they contain (Bonifacino and Glick, 2004; Bonifacino and LippincottSchwartz, 2003). Clathrin-coated vesicles (CCVs) are involved in the transport between organelles, such as the trans-Golgi netw...
متن کاملTunable nanomechanics of protein disulfide bonds in redox microenvironments.
Disulfide bonds are important chemical cross-links that control the elasticity of fibrous protein materials such as hair, feather, wool and gluten in breadmaking dough. Here we present a novel computational approach using the first-principles-based ReaxFF reactive force field and demonstrate that this approach can be used to show that the fracture strength of disulfide bonds is decreased under ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2011
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2010.12.1298